Hard Lefschetz Theorem for Nonrational Polytopes

نویسنده

  • KALLE KARU
چکیده

The Hard Lefschetz theorem is known to hold for the intersection cohomology of the toric variety associated to a rational convex polytope. One can construct the intersection cohomology combinatorially from the polytope, hence it is well defined even for nonrational polytopes when there is no variety associated to it. We prove the Hard Lefschetz theorem for the intersection cohomology of a general polytope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hard Lefschetz theorem for simple polytopes

McMullen’s proof of the Hard Lefschetz Theorem for simple polytopes is studied, and a new proof of this theorem that uses conewise polynomial functions on a simplicial fan is provided.

متن کامل

Recent Developments in Algebraic Combinatorics

We survey three recent developments in algebraic combinatorics. The first is the theory of cluster algebras and the Laurent phenomenon of Sergey Fomin and Andrei Zelevinsky. The second is the construction of toric Schur functions and their application to computing three-point Gromov-Witten invariants, by Alexander Postnikov. The third development is the construction of intersection cohomology f...

متن کامل

Ehrhart Theory for Lawrence Polytopes and Orbifold Cohomology of Hypertoric Varieties

We establish a connection between the orbifold cohomology of hypertoric varieties and the Ehrhart theory of Lawrence polytopes. More specifically, we show that the dimensions of the orbifold cohomology groups of a hypertoric variety are equal to the coefficients of the Ehrhart δ-polynomial of the associated Lawrence polytope. As a consequence, we deduce a formula for the Ehrhart δ-polynomial of...

متن کامل

On the Generalized Lower Bound Conjecture for Polytopes and Spheres

In 1971, McMullen and Walkup posed the following conjecture, which is called the generalized lower bound conjecture: If P is a simplicial d-polytope then its h-vector (h0, h1, . . . , hd) satisfies h0 ≤ h1 ≤ · · · ≤ h⌊ d2 ⌋. Moreover, if hr−1 = hr for some r ≤ d2 then P can be triangulated without introducing simplices of dimension ≤ d− r. The first part of the conjecture was solved by Stanley ...

متن کامل

Nonrational polytopes and compactifications of quasitori

Nonrational nonsimple convex polytopes can be considered in quasilattices. We prove that the corresponding complex quasitori can be compactified by suitably adding smaller dimensional orbits. The final objects, constructed as complex quotients, are spaces stratified by complex quasifolds that perfectly mimic the features of toric varieties associated to rational convex polytopes. 2000 Mathemati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001